روش گروهی مدل سازی داده ها یا Group Method of Data Handling (به اختصار GMDH) یکی از روش های مدل سازی و رگرسیون خطی است، که در سال ۱۹۶۸ توسط دانشمند اوکراینی، آلکسی ایواکننکو (Alexey Ivakhnenko) معرفی شد. در این رویکرد، به جای ساخت مدل های تخمین گر به صورت یکجا، از الگوریتمی تکرار شونده و افزایشی استفاده می شود که شامل تولید و افزوده شدن ساختارهای پایه بسیار ساده (نورون های چند جمله ای) است و به مرور، با ترکیب این ساختارهای ساده، سیستمی پیچیده شکل می گیرد که دارای عملکرد مطلوب است. بر خلاف سایر روش های رگرسیون، در این رویکرد، علاوه بر ساخت تدریجی مدل، از الگوی انتخاب طبیعی (Natural Selection)، همانند آنچه که در الگوریتم های تکاملی است، استفاده شده است.
یکی از پایه ای ترین و مهم ترین الگوریتم ها برای ساخت مدل GMDH، که به نام شبکه عصبی چند جمله ای (Polynomial Neural Network و یا PNN) نیز شناخته می شود، الگوریتم ارائه شده توسط خود ایواکننکو است که پایه اصلی آن را، مدل چند جمله ای درجه دو و الگوریتم کمترین مربعات خطا تشکیل می شود.
در این قسمت کدهای شبکه عصبی GMDH خدمت شما عزیزان ارائه شده است.
There are no reviews yet.